Assume to the Contrary. Then There Exists a Feasible U-fragment with the Blocks of Overlapping B Pq

ثبت نشده
چکیده

pair of interlacing bights, A 1 and A 2. Let A 1 be between a 1 and a 2 and A 2 , between b 1 and b 2 , where a 1 , a 2 , b 1 and b 2 are four distinct vertices on J such that they are external vertices of attachment on J or one of s and t. Further assume that U has the least number of blocks of overlapping B PQ-bridges. Assume that B 1 , B 2 ,. . ., B l are so so ordered that if i < j (for 1 i, j l) then the vertices of attachment of B i on P and Q are to the left of those of B j on P and Q, respectively. It then follows that of the four vertices a 1 , a 2 , b 1 and b 2 , at least two lie on the subpath J]t P (B 1); t Q (B 1) and at least two lie on the subpath J]s P (B l); s Q (B l) and that l = 2. But then it is easy to see that in this case either U B1 or U B2 has a pair of interlacing bights; this contradicts the assumption.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Left Annihilator of Identities Involving Generalized Derivations in Prime Rings

Let $R$ be a prime ring with its Utumi ring of quotients $U$, &nbsp;$C=Z(U)$ the extended centroid of $R$, $L$ a non-central Lie ideal of $R$ and $0neq a in R$. If $R$ admits a generalized derivation $F$ such that $a(F(u^2)pm F(u)^{2})=0$ for all $u in L$, then one of the following holds: begin{enumerate} item there exists $b in U$ such that $F(x)=bx$ for all $x in R$, with $ab=0$; item $F(x)=...

متن کامل

A Characterization of the Entropy--Gibbs Transformations

Let h be a finite dimensional complex Hilbert space, b(h)+ be the set of all positive semi-definite operators on h and Phi is a (not necessarily linear) unital map of B(H) + preserving the Entropy-Gibbs transformation. Then there exists either a unitary or an anti-unitary operator U on H such that Phi(A) = UAU* for any B(H) +. Thermodynamics, a branch of physics that is concerned with the study...

متن کامل

Additive maps on C$^*$-algebras commuting with $|.|^k$ on normal elements

Let $mathcal {A} $ and $mathcal {B} $ be C$^*$-algebras. Assume that $mathcal {A}$ is of real rank zero and unital with unit $I$ and $k>0$ is a real number. It is shown that if $Phi:mathcal{A} tomathcal{B}$ is an additive map preserving $|cdot|^k$ for all normal elements; that is, $Phi(|A|^k)=|Phi(A)|^k $ for all normal elements $Ainmathcal A$, $Phi(I)$ is a projection, and there exists a posit...

متن کامل

A contribution to infinite disjoint covering systems

Let the collection of arithmetic sequences {din+ bi : n ∈ Z}i∈I be a disjoint covering system of the integers. We prove that if di = pq for some primes p, q and integers k, l ≥ 0, then there is a j 6= i such that di|dj . We conjecture that the divisibility result holds for all moduli. A disjoint covering system is called saturated if the sum of the reciprocals of the moduli is equal to 1. The a...

متن کامل

$k$-power centralizing and $k$-power skew-centralizing maps on‎ ‎triangular rings

‎Let $mathcal A$ and $mathcal B$ be unital rings‎, ‎and $mathcal M$‎ ‎be an $(mathcal A‎, ‎mathcal B)$-bimodule‎, ‎which is faithful as a‎ ‎left $mathcal A$-module and also as a right $mathcal B$-module‎. ‎Let ${mathcal U}=mbox{rm Tri}(mathcal A‎, ‎mathcal M‎, ‎mathcal‎ ‎B)$ be the triangular ring and ${mathcal Z}({mathcal U})$ its‎ ‎center‎. ‎Assume that $f:{mathcal U}rightarrow{mathcal U}$ is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993